Implementasi Algoritma Modified K-nearest Neighbor (mknn) Untuk Klasifikasi Penyakit Kanker Payudara

Authors

  • M Ikhsan Perdana Putra Telkom University
  • Danang Triantoro Murdiansyah Telkom University
  • Annisa Aditsania Telkom University

Abstract

Abstrak Kanker payudara adalah salah satu penyakit mematikan di dunia.Menurut data WHO tahun 2013,penderita kanker payudara di dunia meningkat dari 12,7 juta kasus pada tahun 2008 menjadi 14,1 kasus juta pada tahun 2012.Sedangkan jumlah kematian meningkat dari 7,6 juta orang tahun 2008 menjadi 8,2 juta pada tahun 2012[1]. Dikarenakan semakin tinggi penyakit kanker payudara penting untuk mengetahui dan mencegah penyakit tersebut. Penelitian ini menggunakan data dari “UCI – Machine Learning Repository Breast Cancer Winconsinâ€. Data yang diklasifikasikan terbagi atas 2 kelas yaitu kanker payudara jinak dan kanker payudara ganas. Tujuan dari penelitian ini adalah mengelompokkan penyakit tersebut termasuk kategori jinak atau ganas berdasarkan data yang ada. Penelitian ini menggunakan dataset breast cancer Wisconsin. Metode yang digunakan dalam penelitian ini adalah algoritma Modified K-Nearest Neighbor(MKNN). Hasil pengujian menunjukkan bahwa nilai K sangat mempengaruhi akurasi. Rata-rata akurasi cenderung menurun jika nilai K dinaikkan dan akurasi akan meningkat jika data latihnya dinaikkan. Hasil akurasi tertinggi pada pengujian ini sebesar 97.61 % dengan K=1 dan data latih 90%.

Kata kunci : Kanker Payudara, Modified K-Nearest Neighbor(MKNN)

Abstract Breast cancer is one of the deadliest diseases in the world. According to WHO data in 2013, breast cancer patients in the world increased from 12.7 million cases in 2008 to 14.1 million cases in 2012. While the number of deaths increased from 7.6 million people in 2008 became 8.2 million in 2012 [1]. Because the higher breast cancer is important to know and prevent the disease. This study uses data from "UCI - Machine Learning Repository Breast Cancer Wisconsin". Data classified are divided into 2 classes, namely benign breast cancer and malignant breast cancer. The purpose of this study is to classify the disease including benign or malignant categories based on existing data. This study uses the Wisconsin breast cancer dataset. The method used in this study is the Modified K-Nearest Neighbor (MKNN) algorithm. The test results show that the K value is very affect accuracy. Average accuracy tends to decrease if the value of K is increased and accuracy will increase if the training data is increased. The highest accuracy results in this test are 97.61% with K = 1 and training data 90%. .

Keywords: breast cancer, Modified K-Nearest Neighbor(MKNN)

Downloads

Published

2019-04-01

Issue

Section

Program Studi S1 Ilmu Komputasi