Deteksi Status Gizi Balita Dengan Estimasi Antropometri Menggunakan Metode Deteksi Tepi Berbasis Pengolahan Citra Digital

Rafid Fakhri, Rita Magdalena, R Yunendah Nur Fu’adah

Abstract

Abstrak Untuk mengetahui kategori status gizi pada balita dibutuhkan nilai tinggi dan berat badan. Namun pengukuran secara manual cenderung tidak efektif. Sehingga dibutuhkan suatu cara yang efisien untuk mendapatkan nilai status gizi balita. Oleh karena itu dilakukan penelitian untuk membuat aplikasi yang bisa mendeteksi estimasi tinggi dan berat badan menggunakan analisis pengolahan citra digital pada foto balita menggunakan Matlab. Hal ini dilakukan dengan menguji citra digital pada layer grayscale, Red Green Blue (RGB). Serta menganalisis nilai keluaran yang didapat dari masing-masing operator pada metode Deteksi Tepi, yaitu operator Canny, Roberts, Prewitt, dan Sobel. Hasil dari esktraksi ciri diklasifikasikan menggunakan tabel standar antropometri penilaian status gizi balita[1] yang sudah dikeluarkan oleh menteri kesehatan. Hasil keluaran aplikasi berupa beberapa kategori dari indeks status gizi, yaitu indeks berdasarkan Berat Badan Menurut Umur (BB/U), Tinggi Badan Menurut Umur (TB/U), dan Berat Badan Menurut Tinggi Badan (BB/TB). Hasil yang didapat dengan menggunakan metode tersebut, sistem aplikasi untuk mendeteksi status gizi menampilkan performansi dengan tingkat akurasi paling besar 87.08% pada tinggi dan 74.78% pada berat badan balita menggunakan 25 sampel citra laki-laki dan 25 sampel citra perempuan. Dengan adanya aplikasi ini proses menghitung status gizi balita dapat dilakukan berkala dan lebih praktis dibandingkan secara manual. Kata Kunci : Edge Detection, Canny, Sobel, Prewitt, Robert, Anthropometry Abstract To find out the nutritional status category in children, the height and weight values are needed. But with manual measurement tends to be ineffective. So that it requires an efficient way to get the nutritional status of children. Therefore a study was conducted to make an application that could detect the estimation of height and weight using an analysis of digital image processing on child’s photos using Matlab. This is done by testing digital images on the grayscale layer, Red Green Blue (RGB). And analyze the value of the output obtained from each operator on the Edge Detection method, namely Canny, Roberts, Prewitt, and Sobel Operators. The results of feature extraction are classified using the standard anthropometric table evaluating the nutritional status of children [1] issued by the minister of health. The results of the application are in the form of several categories of nutritional status indices, which are indexes based on Body Weight by Age (BB / U), Body Height by Age (TB / U), and Body Weight by Body Height (BB / TB). The results obtained using this method, the application system for detecting nutritional status displays performance with the highest level of accuracy of 87.08% at high and 74.78% on underweight children using 25 male image samples and 25 female image samples. With this application the process of calculating child nutritional status can be done periodically and more practically than manually. Keywords : Edge Detection, Canny, Sobel, Prewitt, Robert, Anthropometry

Full Text:

PDF

Refbacks

  • There are currently no refbacks.
max_upload :0