Bayesian Estimation of Spatio-Temporal Models with Covariates Measured with Spatio-Temporally Correlated Errors: Evidence from Monte Carlo Simulation
Abstract
Spatio-temporal data are susceptible to covariates measured with errors. However, little is known about the empirical effects of measurement error on the asymptotic biases in regression coefficients and variance components when measurement error is ignored. The purpose of this paper is to analyze Bayesian inference of spatio-temporal models in the case of a spatio-temporally correlated covariate measured with error by way of Monte Carlo simulation. We consider spatio-temporal model with spatio-temporal correlation structure corresponds to the Leroux conditional autoregressive (CAR) and the first order autoregressive priors. We apply different spatio-temporal dependence parameter of response and covariate. We use the relative bias (RelBias) and Root Mean Squared Error (RMSE) as valuation criteria. The simulation results show the Bayesian analysis considering measurement error show more accurate and efficient estimated regression coefficient and variance components compared with naïve analysis.References
L. Anselin,. Spatial Econometrics. A Companion to Theoretical
Econometrics. Edited by Badi H. Baltagi. Blackwell
Publishing Ltd, 2003.
J. P. LeSage, 2014. Spatial econometrics panel data model
specification: A Bayesian approach. Spatial Statistics, 9,
-145.
L. Bernardinelli, C. Pascutto, N. G. Best, and W. R. Gilks.
Disease mapping with errors in covariates. Statist.
Medicine, 16, 741-752.
Y. Li, H. Tang, X. Lin, 2009. Spatial linear mixed models
with covariate measurement errors. Statistica Sinica 19(3):
Huque, M. H., H.D Bondell, and L. Ryan. 2014. On the impact
of covariate measurement error on spatial regression
modelling. Environmetrics 25:560-570.
Muff, S., A. Riebler, L. Held, H. Rue, and P. Saner. 2015.
Bayesian analysis of measurement error models using integrated
nested Laplace approximations. J. R. Stat. Soc. Ser. C.
Appl. Stat. 64 (2): 231-252.
Stoklosa J., P. Dann, R. M. Huggins and W. H. Hwang. 2016.
Estimation of survival and capture probabilities in open population
capture-recapture models when covariates are subject
to measurement error. Computational Statistics and Data
Analysis 96, 74-86.
Huque, M. H., H.D. Bondell, R. J. Carroll and L. Ryan. 2016.
Spatial regression with covariate measurement error: A
semiparametric approach. Biometrics:1-9.
Xia, H. and B. P Carlin. 1998. Spatio-temporal models with
errors in covariates: mapping Ohio lung cancer mortality.
Statist. Medicine 17, 2025-2043.
Rushworth A., D. Lee and R. Mitchell. 2014. A spatio-temporal
model for estimating the long-term effects of air
pollution on respiratory hospital admissions in Greater London.
Spatial and Spatio-temporal Epidemiology 10:29-38.
Truong L. T., L. Kieu and T. A. Vu. 2016. Spatio-temporal
and random parameter panel data models of traffic crash fatalities
in Vietnam. Accident Analysis and Prevention
:153-161.
Gelman, A., Carlin J. B., Stern H. S., Dunson D. B., Vehtari A,
and Rubin, D.B., Bayesian Data Analysis. Chapman &
Hall/CRC, New York, NY, 2014.