Implementasi Face Detection dan Penghitungan Jumlah Menggunakan Raspberry Pi 4 dan Kamera Raspberry NoIR

Authors

  • Ibram Muharam Bachri Telkom University
  • Muhammad Ary Murti Telkom University
  • Azam Zamhuri Fuadi Telkom University

Abstract

Abstrak Jurnal ini membahas tentang implementasi face detection (deteksi wajah) dan penghitungan jumlah menggunakan Raspberry Pi 4 dan kamera Raspberry NoIR. Tujuannya adalah mengembangkan sistem untuk mendeteksi wajah manusia dalam gambar atau video serta menghitung jumlah wajah yang terdeteksi. Metodenya menggunakan algoritma face detection berbasis komputer vision dengan library OpenCV. Raspberry Pi 4 digunakan sebagai platform utama, dan kamera Raspberry NoIR digunakan untuk mengambil gambar/video yang dianalisis. Selama tahap implementasi, Raspberry Pi 4 dihubungkan dengan kamera Raspberry NoIR, dan program Python dikembangkan untuk mengakses kamera, melakukan face detection, dan menghitung jumlah wajah yang terdeteksi. Sistem terintegrasi dengan platform Antares untuk mengirimkan data deteksi wajah. Hasil pengujian menunjukkan sistem dapat mendeteksi wajah manusia dengan akurasi tinggi dan menghitung jumlah wajah dengan tepat. Sistem beroperasi baik pada Raspberry Pi 4 dan kamera Raspberry NoIR, menghasilkan hasil deteksi yang memuaskan, dan dapat mengirimkan data ke platform Antares dengan delay yang diatur. Penelitian ini memiliki potensi aplikasi luas di bidang pengawasan keamanan, analisis data, pengenalan wajah, dan lainnya, serta berkontribusi pada pengembangan teknologi face detection praktis menggunakan Raspberry Pi 4 dan kamera Raspberry NoIR.

Kata kunci — face detection, deteksi wajah, OpenCV, Antares.

References

Raspberry Pi Foundation. (2021). Raspberry Pi 4 Model

B. Retrieved from

https://www.raspberrypi.org/products/raspberry-pi-4modelb/

OpenCV. (2021). OpenCV: Open Source Computer

Vision Library. Retrieved from https://opencv.org/

Antares. (2021). Antares: IoT Platform for Data-driven

Applications. Retrieved from https://antares.id/

Viola, P., & Jones, M. (2001). Rapid object detection using

a boosted cascade of simple features. Proceedings of the

IEEE Computer Society Conference on Computer Vision

and Pattern Recognition, 1, I-511-I-518.

Bradski, G. R. (2000). The OpenCV Library. Dr. Dobb's

Journal of Software Tools, 25(11), 120-125.

Acharya, T., Ray, A., & Mandal, B. (2016). Face detection

and recognition using OpenCV. Procedia Computer

Science, 93, 1019-1025.

Zan, L., & Wu, B. (2018). Raspberry Pi-based face

recognition and display system. Proceedings of the 2nd

International Conference on Image, Vision and

Computing, 16-20.

Tariq, U., Usman, M., & Sharif, M. (2019). Human face

detection using Raspberry Pi for visual surveillance.

Proceedings of the 2019 International Conference on

Computing, Electronics & Communications Engineering,

-5.

Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal

basis for the heuristic determination of minimum cost

paths. IEEE Transactions on Systems Science and

Cybernetics, 4(2), 100-107.

Liu, S., Li, X., Kan, M., & Wu, L. (2018). Human face

detection based on Haar-like features and improved

Adaboost algorithm. Journal of Visual Communication

and Image Representation, 52, 194-200.

Kaur, G., Singh, G., & Khanna, R. (2016). Facial

recognition using fuzzy logic. Proceedings of the 2016

International Conference on Signal Processing and

Communication Engineering Systems, 1-6.

Gupta, A., Arora, N., & Garg, S. (2017). Raspberry Pi

based facial recognition using fuzzy logic. Proceedings of

the 2017 2nd International Conference on Computing,

Communication and Automation, 1-5.

Huynh, T. P., Do, T. T., & Le, T. T. (2020). Real-time

face detection and recognition using Raspberry Pi and

OpenCV. Proceedings of the 2020 International

Conference on System Science and Engineering, 214-219.

Huda, S., & Wibowo, F. W. (2020). Raspberry

Pibased face detection and recognition system using

OpenCV. Proceedings of the 2020 5th International

Conference on Electrical Engineering, Computer Science

and Informatics, 1-5.

Zhang, Z., Luo, P., Loy, C. C., & Tang, X. (2016).

Joint face detection and alignment using multitask

cascaded convolutional networks. IEEE Signal Processing

Letters, 23(10), 1499-1503.

Szeliski, R. (2010). Computer Vision: Algorithms and

Applications. Springer.

Datta, A., Poddar, S., Dey, A., & Ghosh, S. (2019).

An improved face detection method based on Haar

cascades and deep learning. Proceedings of the 2019 11th

International Conference on Computational Intelligence

and Communication Networks, 1-5.

Wu, B., Zhang, L., & Geng, W. (2018). Raspberry Pi

based facial recognition and attendance system.

Proceedings of the 2018 2nd International Conference on

Robotics and Automation Engineering, 164-168.

Pradhan, M. (2017). A comparative study of face

detection algorithms. Proceedings of the 2017

International Conference on Electrical, Electronics,

Communication, Computer, and Optimization

Techniques, 1-5.

Fernandez, A. (2016). Computer Vision with

Raspberry Pi. Packt Publishing Ltd.

Downloads

Published

2024-02-29

Issue

Section

Program Studi S1 Teknik Elektro