Implementasi Face Detection dan Penghitungan Jumlah Menggunakan Raspberry Pi 4 dan Kamera Raspberry NoIR
Abstract
Abstrak Jurnal ini membahas tentang implementasi face detection (deteksi wajah) dan penghitungan jumlah menggunakan Raspberry Pi 4 dan kamera Raspberry NoIR. Tujuannya adalah mengembangkan sistem untuk mendeteksi wajah manusia dalam gambar atau video serta menghitung jumlah wajah yang terdeteksi. Metodenya menggunakan algoritma face detection berbasis komputer vision dengan library OpenCV. Raspberry Pi 4 digunakan sebagai platform utama, dan kamera Raspberry NoIR digunakan untuk mengambil gambar/video yang dianalisis. Selama tahap implementasi, Raspberry Pi 4 dihubungkan dengan kamera Raspberry NoIR, dan program Python dikembangkan untuk mengakses kamera, melakukan face detection, dan menghitung jumlah wajah yang terdeteksi. Sistem terintegrasi dengan platform Antares untuk mengirimkan data deteksi wajah. Hasil pengujian menunjukkan sistem dapat mendeteksi wajah manusia dengan akurasi tinggi dan menghitung jumlah wajah dengan tepat. Sistem beroperasi baik pada Raspberry Pi 4 dan kamera Raspberry NoIR, menghasilkan hasil deteksi yang memuaskan, dan dapat mengirimkan data ke platform Antares dengan delay yang diatur. Penelitian ini memiliki potensi aplikasi luas di bidang pengawasan keamanan, analisis data, pengenalan wajah, dan lainnya, serta berkontribusi pada pengembangan teknologi face detection praktis menggunakan Raspberry Pi 4 dan kamera Raspberry NoIR.
Kata kunci — face detection, deteksi wajah, OpenCV, Antares.
References
Raspberry Pi Foundation. (2021). Raspberry Pi 4 Model
B. Retrieved from
https://www.raspberrypi.org/products/raspberry-pi-4modelb/
OpenCV. (2021). OpenCV: Open Source Computer
Vision Library. Retrieved from https://opencv.org/
Antares. (2021). Antares: IoT Platform for Data-driven
Applications. Retrieved from https://antares.id/
Viola, P., & Jones, M. (2001). Rapid object detection using
a boosted cascade of simple features. Proceedings of the
IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, 1, I-511-I-518.
Bradski, G. R. (2000). The OpenCV Library. Dr. Dobb's
Journal of Software Tools, 25(11), 120-125.
Acharya, T., Ray, A., & Mandal, B. (2016). Face detection
and recognition using OpenCV. Procedia Computer
Science, 93, 1019-1025.
Zan, L., & Wu, B. (2018). Raspberry Pi-based face
recognition and display system. Proceedings of the 2nd
International Conference on Image, Vision and
Computing, 16-20.
Tariq, U., Usman, M., & Sharif, M. (2019). Human face
detection using Raspberry Pi for visual surveillance.
Proceedings of the 2019 International Conference on
Computing, Electronics & Communications Engineering,
-5.
Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal
basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and
Cybernetics, 4(2), 100-107.
Liu, S., Li, X., Kan, M., & Wu, L. (2018). Human face
detection based on Haar-like features and improved
Adaboost algorithm. Journal of Visual Communication
and Image Representation, 52, 194-200.
Kaur, G., Singh, G., & Khanna, R. (2016). Facial
recognition using fuzzy logic. Proceedings of the 2016
International Conference on Signal Processing and
Communication Engineering Systems, 1-6.
Gupta, A., Arora, N., & Garg, S. (2017). Raspberry Pi
based facial recognition using fuzzy logic. Proceedings of
the 2017 2nd International Conference on Computing,
Communication and Automation, 1-5.
Huynh, T. P., Do, T. T., & Le, T. T. (2020). Real-time
face detection and recognition using Raspberry Pi and
OpenCV. Proceedings of the 2020 International
Conference on System Science and Engineering, 214-219.
Huda, S., & Wibowo, F. W. (2020). Raspberry
Pibased face detection and recognition system using
OpenCV. Proceedings of the 2020 5th International
Conference on Electrical Engineering, Computer Science
and Informatics, 1-5.
Zhang, Z., Luo, P., Loy, C. C., & Tang, X. (2016).
Joint face detection and alignment using multitask
cascaded convolutional networks. IEEE Signal Processing
Letters, 23(10), 1499-1503.
Szeliski, R. (2010). Computer Vision: Algorithms and
Applications. Springer.
Datta, A., Poddar, S., Dey, A., & Ghosh, S. (2019).
An improved face detection method based on Haar
cascades and deep learning. Proceedings of the 2019 11th
International Conference on Computational Intelligence
and Communication Networks, 1-5.
Wu, B., Zhang, L., & Geng, W. (2018). Raspberry Pi
based facial recognition and attendance system.
Proceedings of the 2018 2nd International Conference on
Robotics and Automation Engineering, 164-168.
Pradhan, M. (2017). A comparative study of face
detection algorithms. Proceedings of the 2017
International Conference on Electrical, Electronics,
Communication, Computer, and Optimization
Techniques, 1-5.
Fernandez, A. (2016). Computer Vision with
Raspberry Pi. Packt Publishing Ltd.