Pemilihan Fitur Statistik serta Implementasi Model Decision Tree Machine Learning Pada Arduino Nano 33 BLE Untuk Pendeteksian dan Klasifikasi Gerak Jatuh dan Kecenderungan Jatuh Lansia Berbasis Nilai Akselerasi

Authors

  • Azzahra Nadya Kahpiasa Telkom University
  • Istiqomah Istiqomah Telkom University
  • Husneni Mukhtar Telkom University

Abstract

Orang yang berusia di atas 60 tahun dianggap sudah lanjut usia. Penurunan fungsi fisiologis terkait usia, termasuk fungsi tulang dan otot, berkontribusi terhadap peningkatan risiko jatuh pada lansia. Salah satu keadaan yang bisa berakibat fatal adalah terjatuh. Kemunduran berbagai proses organ yang terlibat dalam menjaga keseimbangan tubuh dapat dipengaruhi oleh dampak ini, yang mungkin berdampak pada kematian. Orang tua banyak jatuh sekarang, namun keluarga sering tidak menyadari keberadaan mereka. Secara tradisional, tetangga di dekat rumah lansia adalah sumber utama informasi mengenai kondisi mereka. Studi sebelumnya telah menggunakan sifat statistik dan sensor inersia untuk mengenali aktivitas manusia pada orang tua. Dalam studi ini, kami akan mengevaluasi metode ekstraksi fitur dan pembelajaran mesin terbaik. Variabel maximum, minimum, mean, median, kurtosis, skewness, dan variance yang dikumpulkan dari data sensor akselerometer menggunakan sensor IMU akan diperiksa untuk ekstraksi fitur menggunakan metode Fast Fourier Transform. Digunakan Cross-validation untuk mengetahui performa mode Decision Tree. Dengan nilai akurasi 99,8% dan nilai ekstraksi ciri terbaik pada Maksimum accelX, median accelZ, variance accelZ, variance Magnitude, dan maksimum Magnitude.

Kata kunci—Elderly, Fall, Machine Learning, Accelero, Micromlgen, Kodular

References

V. S. Thomas, S. Darvesh, C. MacKnight, and K.

Rockwood,

people: a comparison of the Canadian Study of Health and

Aging and National Population Health Survey approaches,=

Int Psychogeriatr, vol. 13 Supp 1, no. SUPPL. 1, pp. 169-

, 2001, doi: 10.1017/S1041610202008116.

J. Liang, Z. Qin, L. Xue, X. Lin and X. Shen, "Efficient and

Privacy-Preserving Decision Tree Classification for Health

Monitoring Systems," in IEEE Internet of Things Journal, vol. 8, no.

, pp. 12528-12539, 15 Aug.15, 2021, doi:

1109/JIOT.2021.3066307.

M. M. Alam, H. Malik, M. I. Khan, T. Pardy, A. Kuusik,

and Y. le Moullec,

technologies in IoT-Based personalized healthcare

applications,= IEEE Access, vol. 6, pp. 36611-36631, Jul.

, doi: 10.1109/ACCESS.2018.2853148.

N. G. Nia, E. Kaplanoglu, A. Nasab and H. Qin, "Human

Activity Recognition Using Machine Learning Algorithms Based on

IMU Data," 2023 5th International Conference on Bioengineering

for Smart Technologies (BioSMART), Paris, France, 2023, pp. 1-8,

doi: 10.1109/BioSMART58455.2023.10162095.

Viswanatha, et al. (2022). "Implementation of Tiny Machine

Learning Models on Arduino 33-BLE for Gesture and Speech

Recognition." Journal of Xi'an University of Architecture &

Technology.

Mutlu, O,

computing systems: Enabling in-memory computation=, IEEE 2018.

Eloquent Arduino. [online] 2020. micromlgen. available on

September 19, 2022:

https://github.com/eloquentarduino/micromlgen.

L. Fan, Z. Wang and H. Wang, "Human Activity Recognition

Model Based on Decision Tree," 2013 International Conference on

Advanced Cloud and Big Data, Nanjing, China, 2013, pp. 64-68,

doi: 10.1109/CBD.2013.19.

R. Kumar and R. Verma,

data mining: A survey,= International Journal of Innovations

in Engineering and Technology (IJIET), vol. 1, no. 2, pp. 7-

, 2012.

S. S. Nikam,

techniques in data mining algorithms,= Oriental journal of

computer science & technology, vol. 8, no. 1, pp. 13-19,

Ismail, Istiqomah, and Husneni Mukhtar

Human Activity Recognition for the Elderly Using Inertial

Sensor and Statistical Feature < Proceeding of the 3rd

International Conference on Electronics, Biomedical

Engineering, and Health Informatics, Lecture Notes in

Electrical Engineering 1008, https://doi.org/10.1007/978-

-99-0248-4_21.

riyanka and D. Kumar,

detailed survey,= International Journal of Information and

Decision Sciences, vol. 12, no. 3, pp. 246-269, 2020.

G. Stein, B. Chen, A. S. Wu, and K. A. Hua,

tree classifier for network intrusion detection with GA-based

feature selection,= in Proceedings of the 43rd annual

Southeast regional conferenceVolume 2, 2005, pp. 136-141.

I. S. Damanik, A. P. Windarto, A. Wanto, S. R. Andani,

and W. Saputra,

Algorithm Using Genetic Algorithm,= in Journal of Physics:

Conference Series, 2019, vol. 1255, no. 1, p. 012012.

Y. Liu, L. Hu, F. Yan, and B. Zhang,

with Weight Based Decision Tree for the Employment

Forecasting of Undergraduates,= in 2013 IEEE International

Conference on Green Computing and Communications and

IEEE Internet of Things and IEEE Cyber, Physical and Social

Computing, Beijing, China, Aug. 2013, pp. 2210-2213, doi:

1109/GreenCom-iThingsCPSCom.2013.417

UNICEF (2021). Laporan Tahunan 2021 UNICEF

INDONESIA. [On-line].

Downloads

Published

2024-02-29

Issue

Section

Program Studi S1 Teknik Elektro