Optimalisasi Hyperparameter pada Model Deteksi Transaksi Mencurigakan Menggunakan Grid-Search

Authors

  • Gilman Muslih Zakir Telkom University
  • Anggunmeka Luhur Prasasti Telkom University
  • Marisa W Paryasto Telkom University

Abstract

Fraud, sebagaimana didefinisikan oleh Association of Certified Fraud Examiners (ACFE) mencakup laporan keuangan yang keliru atau penipuan yang dibuat untuk memperoleh keuntungan yang tidak sah. Salah satu bentuk fraud adalah pencucian uang, di mana uang ilegal dipindahkan melalui sistem keuangan untuk membuatnya tampak sah. Panel Tingkat Tinggi International Financial Accountability, Transparency and Integrity (Panel FACTI) memperkirakan sekitar $1,6 triliun (2,7% dari PDB global), dicuci setiap tahun. Adanya transaksi keuangan yang mencurigakan memerlukan deteksi dini oleh lembaga keuangan untuk mencegah penyalahgunaan. Salah satu hal yang ingin dicapai dengan penelitian ini adalah bagaimana cara meningkatkan akurasi dan efisiensi dalam mendeteksi transaksi mencurigakan menggunakan teknologi Machine Learning. Penggunaan teknologi machine learning merupakan salah satu Solusi untuk mengatasi tantangan dalam mendeteksi transaksi mencurigakan. Penelitian ini dilakukan dengan mengembangkan model deteksi transaksi mencurigakan menggunakan algoritma XGBoost, Decision Tree, dan Logistic Regression dengan menerapkan Hyperparameter tuning yang dibantu dengan pencarian hyperparameter terbaik menggunakan Grid-Search untuk mendapatkan performa terbaik dari model yang dikembangkan.

Kata kunci—decision tree, grid-search, hyperparameter tuning, logistic regression, xgboost.

References

J. Yao, J. Zhang and L. Wang, “A financial statement fraud detection model based on hybrid data mining methods,” 2018 International Conference on Artificial Intelligence and Big Data (ICAIBD), pp. 57-61, 2018, doi: 10.1109/ICAIBD.2018.8396167.

R. Frumerie, “Money Laundering Detection using Tree Boosting and Graph Learning Algorithms,” M.S. thesis, Dept. Mathematics., KTH., Stockholm, Sweden, 2021. [Online]. Available:

https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1663255&dswid=6464

N. Alfa, S. Mawar, N. H. Siahaan, R. Putri, “Memahami Transaksi Keuangan Mencurigakan,” ppatk.go.id. Accessed: Oct. 10, 2023. [Online.] Available: https://www.ppatk.go.id/siaran_pers/read/953/memaha mi-transaksi-keuangan-mencurigakan.html

L. Wahab and H. Jiang, "A comparative study on machine learning based algorithms for prediction of motorcycle crash severity," PLOS ONE, vol. 14, no. 4, pp. 1-17, Apr. 2019. [Online]. Available: https://doi.org/10.1371/journal.pone.0214966.

J. Watt, R. Borhani, and A. K. Katsaggelos, “Linear Two-Class Classification” in Machine Learning Refined: Foundations, Algorithms, and Applications. Cambridge: Cambridge University Press, 2020, ch. 6, sec. 2, pp. 125. [Online]. Available: https://books.google.com/

C. Arnold, L. Biedebach, A. Küpfer, and M. Neunhoeffer, "The role of hyperparameters in machine learning models and how to tune them," Political Science Research and Methods, vol. 1, no. 1, pp. 1-8, Feb. 2024. doi: 10.1017/psrm.2023.61.

Y. A. Albastaki and W. Awad, Eds., “Using an Artificial Neural Network to Improve Email Security” in Implementing Computational Intelligence Techniques for Security Systems Design, Hershey, PA: Information Science Reference, IGI Global, 2020, p. 137.

R. Guido, M. C. Groccia, and D. Conforti, “A hyper-parameter tuning approach for cost-sensitive support vector machine classifiers,” in Soft Computing, vol. 27, no. 18, pp. 12863-12881, Sep. 2023, doi: 10.1007/s00500-022-06768-8.

G. SijiGeorgeC and B. Sumathi, "Grid search tuning of hyperparameters in random forest classifier for customer feedback sentiment prediction," International Journal of Advanced Computer Science and Applications, vol. 11, pp. 1-8, 2020. [Online]. Available: https://api.semanticscholar.org/CorpusID:222433720.

G. SijiGeorgeC and B. Sumathi, "Grid search tuning of hyperparameters in random forest classifier for customer feedback sentiment prediction," International Journal of Advanced Computer Science and Applications, vol. 11, pp. 1-8, 2020. [Online]. Available: https://api.semanticscholar.org/CorpusID:222433720.

N. Beheshti, "Cross validation and grid search using sklearn’s GridSearchCV on random forest model," Towards Data Science, Feb. 5, 2022. [Online]. Available: https://towardsdatascience.com.

A. Saud, S. Shakya, and B. Neupane, "Analysis of Depth of Entropy and GINI Index Based Decision Trees for Predicting Diabetes," Indian Journal of Computer Science, vol. 6, pp. 19-28, Jan. 2022, doi: 10.17010/ijcs/2021/v6/i6/167641.

Published

2024-12-01

Issue

Section

Program Studi S1 Teknik Komputer