Implementasi Klasifikasi Decision Tree Dengan Algoritma C4.5 Dalam Pengambilan Keputusan Permohonan Kredit Oleh Debitur (Studi Kasus: Bank Pasar Daerah Istimewa Yogyakarta)

Authors

  • Rafik Khairul Amin Telkom University
  • Indwiarti Indwiarti Telkom University
  • Yuliant Sibaroni Telkom University

Abstract

Meminjam dangan cara kredit sudah merupakan hal biasa di masyarakat. Sebelum mendapatkan kredit, seseorang harus melalui survey yang akan dilakukan oleh seorang analisis kredit untuk mengetahui apakah pemohon kredit layak atau tidak layak untuk mendapat kredit.Seorang analisis kredit harus benar-benar teliti dalam memprediksi pemohon kredit tersebut dalam pemberian kredit agar tidak terjadi kredit macet. Perlu adanya suatu penunjang keputusan untuk membantu seorang analisis kreditdalammemprediksi pemohon kredit. Pohon keputusan adalah model prediksi menggunakan struktur pohon atau struktur berhirarki. Pohon keputusan merupakan salah satu metode klasifikasi yang paling populer karena mudah untuk dipahami. C4.5 merupakan algoritma pohon keputusan yang sering digunakan untuk membuat suatu pohon keputusan karena memiliki tingkat akurasi yang tinggi dalam menentukan keputusan. Algoritma C4.5 adalah suksesor dari ID3 dimana pemilihan root dan parent bukan hanya berdasar information gain saja tetapi juga split information untuk mendapatkan Gain Ratio. Dataset yang digunakan dalam penelitian ini yaitu sebanyak 1000 data dengan proporsi 70% disetujui dan 30% data debitur yang ditolak. Dalam laporan ini dibahas kinerja algoritma pohon keputusan C4.5 pada identifikasi kelayakan kredit oleh debitur. Dari penelitian yang dilakukan, diketahui nilai precision terbesar dicapai oleh algoritma C4.5 dengan partisi data 90%:10% dengan nilai sebesar 78,08 %. Nilai recall terbesar partisi data 80%:20% dengan nilai sebesar 96,4 %. Dari hasil data latih yang sama,ID3 menghasilkan precision sebesar 71,51% dan recall sebesar 92,09% Hasil akhir dari penelitian ini membuktikan bahwa pada kasus ini algoritma C4.5 memiliki tingkat akurasi yang tinggi dan lebih baik dari ID3.

Kata kunci :Pohon Keputusan, C4.5, Kelayakan Kredit Debitur, Gain Ratio.

Downloads

Published

2015-04-01

Issue

Section

Program Studi S1 Ilmu Komputasi