Low-Cost GPS Spoofing Detecction And Monitoring System
Abstract
Perkembangan teknologi Global Navigation Satellite System (GNSS) telah memberikan dampak signifikan pada berbagai sektor, termasuk transportasi, telekomunikasi, dan geolokasi. Namun, GNSS menghadapi tantangan serius berupa ancaman GPS spoofing yang dapat mengganggu integritas data navigasi melalui manipulasi sinyal. Ancaman ini berisiko tinggi bagi aplikasi yang memerlukan akurasi lokasi tinggi, seperti sistem navigasi otomatis dan aplikasi krusial lainnya. Penelitian ini bertujuan mengembangkan sistem deteksi GPS spoofing berbasis Internet of Things (IoT) dengan biaya rendah, menggunakan modul GPS u-blox NEO-6M V2 yang terintegrasi dengan mikrokontroler ESP32. Sistem mengakuisisi data sinyal GPS, khususnya koordinat lintang dan bujur, yang dianalisis di sisi backend menggunakan pendekatan berbasis aturan (rule- based). Deteksi dilakukan dengan membandingkan koordinat yang diterima dengan titik referensi yang valid, dan jika deviasi melebihi ambang batas yang telah ditentukan, sinyal diklasifikasikan sebagai spoofing. Hasil klasifikasi ditampilkan melalui situs pemantauan berbasis Vercel. Hasil pengujian menunjukkan sistem mampu mendeteksi anomali koordinat secara real-time dengan akurasi tinggi, sehingga menawarkan solusi efektif, terjangkau, dan mudah diimplementasikan untuk mitigasi GPS spoofing pada perangkat IoT.
Kata kunci— IoT, deteksi spoofing, GNSS, rule-based, thresholding, analisis koordinat.
References
I. Pokrajac, N. Kozić, A. Čančarević, and R. Brusin,“Jamming of GNSS Signals,” Scientific and Technical Review, vol. 68, no. 3, pp. 17–21, 2018.
J. Gaspar, R. Ferreira, P. Sebastiao, and N. Souto, “Capture of UAVs Through GPS Spoofing,” in 6th Global Wireless Summit (GWS), pp. 21–26, 2018, doi: 10.1109/GWS.2018.8686727.
G. Blass, A. Hennigar, and S. Mao, “Implementation of a Software-Defined Radio Based Global Positioning System Repeater,” in 2015 ASEE Southeast Section Conf., p. 10, 2015.
S.-H. Seo, B.-H. Lee, S.-H. Im, and G.-I. Jee, “Effect of Spoofing on Unmanned Aerial Vehicle Using Counterfeited GPS Signal,” J. Positioning, Navig. Timing, vol. 4, no. 2, pp. 57–65, 2015, doi: 10.11003/jpnt.2015.4.2.057.
J. Bhatti and T. Humphreys, "Hostile control of ships via false GPS signals: Demonstration and detection," NAVIGATION: Journal of the Institute of Navigation, vol. 64, no. 1, pp. 51–66, 2017.
C. Yang, H. Zhang, and S. Han, "Detection of spoofing signals based on RAIM and INS integration," in Proc. IEEE International Conf. on Information and Automation (ICIA), Yinchuan, China, Aug. 2019, pp. 1118–1123.
T. E. Humphreys, "Detection strategy for cryptographic GNSS antispoofing," IEEE Transactions on Aerospace and Electronic Systems, vol. 49, no. 2, pp. 1073–1090, Apr. 2013.
X. Zhang, F. Dovis, and C. Gioia, "GNSS spoofing detection using DNN under low and high C/N0 conditions," in Proc. European Navigation Conference (ENC), Warsaw, Poland, Apr. 2020, pp. 1–10.
J. Gross, S. Rathinam, and M. T. Wolf, "GNSS spoofing detection using 3D signal propagation modeling," Sensors, vol. 19, no. 20, pp. 1–19, 2019.
A. Broumandan, J. Nielsen, and G. Lachapelle, "GNSS spoofing detection based on receiver autonomous integrity monitoring (RAIM), Navigation, vol. 60, no. 4, pp. 267–277, 2013.
D. Psiaki and T. Humphreys, "GNSS spoofing and detection," Proceedings of the IEEE, vol. 104, no. 6, pp. 1258–1270, Jun. 2016.
D. Shepard, J. Bhatti, T. Humphreys, and A. Fansler, “Evaluation of the vulnerability of phasor measurement units to GPS spoofing attacks,” Int. J. of Critical Infrastructure Protection, vol. 5, no. 3–4, pp. 146–153, 2012.
X. Zhang, F. Dovis, and C. Gioia, “Low-cost and low-complexity GNSS spoofing detection based on a rule-based model,” in Proc. European Navigation Conf. (ENC), 2020, pp. 1–6.



