Anaslisis Penggunan Super Image Resolution Dengan Menggunakan EDSR dan WDSR Pada Sel Manusia

Penulis

  • Farhan Sulthan Rifqi Telkom University
  • Irma Safitri Telkom University
  • Nur Ibrahim Telkom University

Abstrak

Teknologi digital berkembang secara cepat dan masif. Salah satunya pada proses pengamatan sel pada manusia. Teknologi tingkat tinggi yang digunakan untuk proses tersebut adalah menggunakan PET Scan. Namun teknologi tersebut masih memiliki kekurangan, yaitu buruknya citra yang dihasilkan. Penelitian ini berfungsi untuk memperbaiki permasalahan tersebut. Dengan menjadikan output dari PET Scan sebagai data masukan (dataset) ke dalam sebuah model jaringan super-resolution, yaitu model Enhanced Deep Residual Networks for Single Image Super-Resolution (EDSR) dan Wide Activation for Efficient and Accurate Image Super-Resolution (WDSR). Tipe dataset yang digunakan adalah PET Y-90. Model kemudian ditraining untuk melihat seberapa baik model bekerja pada dataset. Proses training dilakukan dengan steps sebanyak 300.000 kali dan batch size 16, serta Scalling dari kedua model adalah 4. Hasil dari proses training akan dianalisis untuk melihat efektifitas perbaikan citra yang dihasilkan model. Dengan membandingkan PSNR dan SSIM yang dihasilkan dapat melihat kualitas citra yang dihasilkan oleh kedua model . Hasil PSNR dari EDSR dan WDSR masing-masing sebesar … dB dan … dB, serta SSIM sebesar … dan … . Setelah dataset di training, citra dengan kualitas rendah dari dataset dapat diubah menjadi citra dengan kualitas Super Resolution.

Kata kunci : EDSR,WDSR,Super-Resolution,Deep Learning

Referensi

Hon, C. C., Shin, J. W., Carninci, P., & Stubbington,

M. J. T. (2018). The human cell atlas: Technical approaches

and challenges. https://doi.org/10.1093/bfgp/elx029.

Regev, A., Teichmann, S., Lander, E., Amit, I.,

Benoist, C., Birney, E., Bodenmiller, B., Campbell, P.,

Carninci, P., & Enard, W. (2017). Science Forum: The

Human Cell Atlas. ELife.

Ledig, C., Theis, L., Huszár, F., Caballero, J.,

Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J.,

Wang, Z., & Shi, W. (2017). Photo-realistic single image

super-resolution using a generative adversarial network.

https://doi.org/10.1109/CVPR.2017.19

Kim, J., Lee, J. K., & Lee, K. M. (2016). Accurate

image super-resolution using very deep convolutional

networks. Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern Recognition.

https://doi.org/10.1109/CVPR.2016.182

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A.,

& Chen, L. C. (2018). Inverted Residuals and Linear

Bottlenecks:Mobile Networks for Classification, Detection

and Segmentation. Proceedings of the IEEE Computer

Society Conference on Computer Vision and Pattern

Recognition.

Simonyan, K., & Zisserman, A. (2015). Very deep

convolutional networks for large-scale image recognition. 3rd

International Conference on Learning Representations, ICLR

- Conference Track Proceedings.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu,

B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y.

(2020). Generative adversarial networks. Communications of

the ACM, 63(11). https://doi.org/10.1145/3422622.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep

residual learning for image recognition. Proceedings of the

IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, 2016-December.

https://doi.org/10.1109/CVPR.2016.90

Yu, J., Fan, Y., & Huang, T. (2020). Wide activation

for efficient image and video super-resolution.

https://doi.org/10.1016/j.nima.2020.164293

Nenclares, P., & Harrington, K. J. (2020). The

biology of cancer. In Medicine (United Kingdom) (Vol. 48,

Issue 2). https://doi.org/10.1016/j.mpmed.2019.11.001

Roizen, M. F. (2012). Hallmarks of Cancer: The

Next Generation. Yearbook of Anesthesiology and Pain

Management, 2012.

https://doi.org/10.1016/j.yane.2012.02.046.

Rosilawati, N. E., Nasution, I., & Murni, T. W.

(2018). PENGGUNAAN RADIOFARMAKA UNTUK

DIAGNOSA DAN TERAPI DI INDONESIA DAN ASAS

KEAMANAN PENGGUNAAN OBAT. SOEPRA, 3(1).

https://doi.org/10.24167/shk.v3i1.697.

Fendler, W. P., Czernin, J., Herrmann, K., & Beyer,

T. (2016). Variations in PET/MRI operations: Results from

an international survey among 39 active sites.

https://doi.org/10.2967/jnumed.116.174169.

Mayerhoefer, M. E., Prosch, H., Beer, L., Tamandl,

D., Beyer, T., Hoeller, C., Berzaczy, D., Raderer, M.,

Preusser, M., Hochmair, M., Kiesewetter, B., Scheuba, C.,

Ba-Ssalamah, A., Karanikas, G., Kesselbacher, J., Prager, G.,

Dieckmann, K., Polterauer, S., Weber, M., … Haug, A. R.

(2020). PET/MRI versus PET/CT in oncology: a prospective

single-center study of 330 examinations focusing on

implications for patient management and cost considerations.

https://doi.org/10.1007/s00259-019-04452-y.

Kim, J., Lee, J. K., & Lee, K. M. (2016). Accurate

image super-resolution using very deep convolutional

networks. Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern Recognition.

https://doi.org/10.1109/CVPR.2016.182.

Lim, B., Son, S., Kim, H., Nah, S., & Lee, K. M.

(2017). Enhanced Deep Residual Networks for Single Image

Super-Resolution. IEEE Computer Society Conference on

Computer Vision and Pattern Recognition Workshops, 2017-

July. https://doi.org/10.1109/CVPRW.2017.151

Shelhamer, E., Long, J., & Darrell, T. (2017). Fully

Convolutional Networks for Semantic Segmentation. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

(4). 2016. https://doi.org/10.1109/TPAMI.

Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K.

(2017). Aggregated residual transformations for deep neural

networks. Proceedings - 30th IEEE Conference on Computer

Vision and Pattern Recognition, CVPR 2017, 2017-January.

https://doi.org/10.1109/CVPR.2017.634

Osendorfer, C., Soyer, H., & van der Smagt, P.

(2014). Image super-resolution with fast approximate

convolutional sparse coding. https://doi.org/10.1007/978-3-

-12643-2_31.

Shi, W., Caballero, J., Huszar, F., Totz, J., Aitken,

A. P., Bishop, R., Rueckert, D., & Wang, Z. (2016). RealTime Single Image and Video Super-Resolution Using an

Efficient Sub-Pixel Convolutional Neural Network.

Proceedings of the IEEE Computer Society Conference on

Computer Vision and Pattern.

Salimans, T., & Kingma, D. P. (2016). Weight

normalization: A simple reparameterization to accelerate

training of deep neural networks.

Wang, Q., Ma, Y., Zhao, K., & Tian, Y. (2022). A

Comprehensive Survey of Loss Functions in Machine

Learning. Annals of Data Science,.

https://doi.org/10.1007/s40745-020-00253-5

Wang, Z., Bovik, A. C., Sheikh, H. R., &

Simoncelli, E. P. (2004). Image quality assessment: From

error visibility to structural similarity. IEEE Transactions on

Image Processing). https://doi.org/10.1109/TIP.2003.819861

Afaq, S., & Rao, S. (2020). Significance Of Epochs

On Training A Neural Network. International Journal of

Scientific & Technology Research, 9(06).

Mujilahwati, S., Sholihin, M., & Wardhani, R.

(2021). Optimasi Hyperparameter TensorFlow dengan

Menggunakan Optuna di Python: Study Kasus Klasifikasi

Dokumen Abstrak Skripsi. JURNAL MEDIA

INFORMATIKA BUDIDARMA,.

https://doi.org/10.30865/mib.v5i3.3090.

Abdelaziz Ismael, S. A., Mohammed, A., & Hefny,

H. (2020). An enhanced deep learning approach for brain

cancer MRI images classification using residual networks.

Artificial Intelligence in Medicine, 102.

https://doi.org/10.1016/j.artmed.2019.101779.

Refianti, R., Mutiara, A. B., & Priyandini, R. P.

(2019). Classification of melanoma skin cancer using

convolutional neural network.

https://doi.org/10.14569/IJACSA.2019.0100353.

Yuliani, E., Aini, A. N., & Khasanah, C. U. (2020).

Perbandingan Jumlah Epoch Dan Steps Per Epoch Pada

Convolutional Neural Network Untuk Meningkatkan Akurasi

Dalam Klasifikasi Gambar.

https://doi.org/10.46808/informa.v5i3.140

Mujilahwati, S., Sholihin, M., & Wardhani, R.

(2021). Optimasi Hyperparameter TensorFlow dengan

Menggunakan Optuna di Python: Study Kasus Klasifikasi

Dokumen Abstrak Skripsi. JURNAL MEDIA

INFORMATIKA BUDIDARMA, 5(3).

https://doi.org/10.30865/mib.v5i3.3090.

Nurfita, R. D., & Ariyanto, G. (2018). Implementasi

Deep Learning berbasis Tensorflow untuk Pengenalan Sidik

Jari. Emitor: Jurnal Teknik Elektro.

https://doi.org/10.23917/emitor.v18i01.6236

Wang, Y. R. (Joyce), Wang, P., Adams, L. C.,

Sheybani, N. D., Qu, L., Sarrami, A. H., Theruvath, A. J.,

Gatidis, S., Ho, T., Zhou, Q., Pribnow, A., Thakor, A. S.,

Rubin, D., & Daldrup-Link, H. E. (2023). Low-count wholebody PET/MRI restoration: an evaluation of dose reduction

spectrum and five state-of-the-art artificial intelligence

models. https://doi.org/10.1007/s00259-022-06097-w

##submission.downloads##

Diterbitkan

2023-12-27

Terbitan

Bagian

Program Studi S1 Teknik Telekomunikasi