Kit Pendeteksi Logam Berat Kadmium (Cd) dengan Modifikasi Nanokomposit ZnO/PVA Doping Graphene
Abstrak
Air minum adalah kebutuhan pokok manusia yang bisa diperoleh dari berbagai sumber, termasuk sungai. Sungai Citarum, sumber air minum bagi banyak kota di Jawa Barat, dinyatakan sebagai sungai terkotor pada tahun 2018 oleh World Bank, menunjukkan tingkat pencemaran yang parah, terutama oleh logam berat kadmium (Cd). Kadar Cd di Sungai Citarum dilaporkan berkisar antara 0,03 mg/l hingga 0,464 mg/l, jauh melebihi standar baku mutu 0,01 mg/l atau 10 ppb sesuai PP Nomor 22 Tahun 2021. Dalam mendeteksi Cd dengan konsentrasi rendah, dikembangkan sebuah kit pendeteksi berbasis metode Cyclic Voltammetry (CV). Kit ini terdiri dari LMP91000EVM sebagai potensiostat, Arduino UNO sebagai mikrokontroler, ADS1115 untuk mengkonversi data analog ke digital, dan HMI Nextion NX8048K050 sebagai layar tampilan. Working Electrode (WE) dimodifikasi dengan nanokomposit ZnO/PVA yang didoping graphene untuk meningkatkan sensitivitas. Modifikasi ini terbukti efektif dengan sensitivitas 4.91541 uA/ppb, linearitas R-Square 0.96232, dan LOD 4.080139 ppb. Pengujian dilakukan sebanyak delapan kali pada konsentrasi Cd yang berbeda, dengan tingkat kesalahan berkisar antara 2.26% hingga 5.01667%. Hasil ini menunjukkan bahwa kit pendeteksi Cd mampu mendeteksi kadar Cd yang berada di sekitar standar baku sebesar 10 ppb.
Kata kunci— Cyclic Voltammetry (CV), Elektrokimia, Kit Pendeteksi, Logam Berat Cd
Referensi
S. Shara, S. S. Moersidik, and T. E. B. Soesilo, “Potential health risks of heavy metals pollution in the Downstream of Citarum River,” in IOP Conference Series: Earth and Environmental Science, IOP Publishing Ltd, Jan. 2021. doi: 10.1088/1755-1315/623/1/012061.
W. Ahmad, R. D. Alharthy, M. Zubair, M. Ahmed, A. Hameed, and S. Rafique, “Toxic and heavy metals contamination assessment in soil and water to evaluate human health risk,” Sci Rep, vol. 11, no. 1, Dec. 2021, doi: 10.1038/s41598-021-94616-4.
P. P. Indonesia, “Peraturan Pemerintah (PP) Nomor 22 Tahun 2021 tentang Penyelenggaraan Perlindungan dan Pengelolaan Lingkungan Hidup,” 2021.
G. Azeh Engwa, P. Udoka Ferdinand, F. Nweke Nwalo, and M. N. Unachukwu, “Mechanism and Health Effects of Heavy Metal Toxicity in Humans,” Poisoning in the Modern World - New Tricks for an Old Dog?, Jun. 2019, doi: 10.5772/INTECHOPEN.82511.
T. Hu, Q. Lai, W. Fan, Y. Zhang, and Z. Liu, “Advances in Portable Heavy Metal Ion Sensors,” Apr. 01, 2023, MDPI. doi: 10.3390/s23084125.
A. Garciá-Miranda Ferrari, P. Carrington, S. J. Rowley-Neale, and C. E. Banks, “Recent advances in portable heavy metal electrochemical sensing platforms,” Oct. 01, 2020, Royal Society of Chemistry. doi: 10.1039/d0ew00407c.
L. Yu et al., “Nanomaterials-Based Ion-Imprinted Electrochemical Sensors for Heavy Metal Ions Detection: A Review,” Dec. 01, 2022, MDPI. doi: 10.3390/bios12121096.
J. A. Buledi, S. Amin, & Syed, I. Haider, M. I. Bhanger, and A. R. Solangi, “RECENT DEVELOPMENTS AND INNOVATIVE STRATEGIES IN ENVIRONMENTAL SCIENCES IN EUROPE A review on detection of heavy metals from aqueous media using nanomaterial-based sensors”, doi: 10.1007/s11356-020-07865-7/Published.
A. Moutcine et al., “Preparation, characterization and simultaneous electrochemical detection toward Cd (II) and Hg(II) of a phosphate/zinc oxide modified carbon paste electrode,” Inorg Chem Commun, vol. 116, Jun. 2020, doi: 10.1016/j.inoche.2020.107911.
J. Liu, G. Zhu, M. Chen, X. Ma, and J. Yang, “Fabrication of electrospun ZnO nanofiber-modified electrode for the determination of trace Cd(II),” Sens Actuators B Chem, vol. 234, pp. 84–91, Oct. 2016, doi: 10.1016/j.snb.2016.04.073.
N. K. Sekar et al., “Fabrication of Electrochemical Biosensor with ZnO-PVA Nanocomposite Interface for the Detection of Hydrogen Peroxide,” J Nanosci Nanotechnol, vol. 18, no. 6, pp. 4371–4379, Dec. 2017, doi: 10.1166/jnn.2018.15259.
R. Ambrosio et al., “Polymeric nanocomposites membranes with high permittivity based on PVA-ZnO nanoparticles for potential applications in flexible electronics,” Polymers (Basel), vol. 10, no. 12, Dec. 2018, doi: 10.3390/polym10121370.
L. A. Malik, A. Bashir, A. Qureashi, and A. H. Pandith, “Detection and removal of heavy metal ions: a review,” Environ Chem Lett, vol. 17, no. 4, pp. 1495–1521, Dec. 2019, doi: 10.1007/S10311-019-00891-Z/FIGURES/17.
L. D. Nguyen et al., “An electrochemical sensor based on polyvinyl alcohol/chitosan-thermally reduced graphene composite modified glassy carbon electrode for sensitive voltammetric detection of lead,” Sens Actuators B Chem, vol. 345, Oct. 2021, doi: 10.1016/j.snb.2021.130443.
Mutia Oktarina Permai Yenny, Arief Hartono, Syaiful Anwar, and Yumei Kang, “Assessment of heavy metals pollution in sediment of Citarum River, Indonesia,” Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan (Journal of Natural Resources and Environmental Management), vol. 10, no. 4, pp. 584–593, Dec. 2020, doi: 10.29244/jpsl.10.4.584-593.
P. P. Indonesia, “Peraturan Pemerintah (PP) Nomor 22 Tahun 2021 tentang Penyelenggaraan Perlindungan dan Pengelolaan Lingkungan Hidup,” 2021.
X. Liu, Y. Yao, Y. Ying, and J. Ping, “Recent advances in nanomaterial-enabled screen-printed electrochemical sensors for heavy metal detection,” Jun. 01, 2019, Elsevier B.V. doi: 10.1016/j.trac.2019.03.021.
S. Khan and J. K. Goh, “Development of polymer-based chemical sensor to study the impact of polymer concentration and freeze-thaw cycle on the detection of gallic acid,” Int J Electrochem Sci, vol. 15, no. 3, pp. 2307–2325, Mar. 2020, doi: 10.20964/2020.03.40.
S. A. Khan et al., “Performance investigation of ZnO/PVA nanocomposite film for organic solar cell,” in Materials Today: Proceedings, Elsevier Ltd, 2021, pp. 2615–2621. doi: 10.1016/j.matpr.2021.05.197.
Y. Liu et al., “Label-Free and Sensitive Determination of Cadmium Ions Using a Ti-Modified Co3 O4-Based Electrochemical Aptasensor,” Biosensors (Basel), vol. 10, no. 12, Dec. 2020, doi: 10.3390/BIOS10120195.
T. Hu, Q. Lai, W. Fan, Y. Zhang, and Z. Liu, “Advances in Portable Heavy Metal Ion Sensors,” Apr. 01, 2023, MDPI. doi: 10.3390/s23084125.
A. Garciá-Miranda Ferrari, P. Carrington, S. J. Rowley-Neale, and C. E. Banks, “Recent advances in portable heavy metal electrochemical sensing platforms,” in Environmental Science: Water Research and Technology, vol. 6, no. 10, Royal Society of Chemistry, 2020, pp. 2676–2690. doi: 10.1039/d0ew00407c.
L. Yu et al., “Nanomaterials-Based Ion-Imprinted Electrochemical Sensors for Heavy Metal Ions Detection: A Review,” Dec. 01, 2022, MDPI. doi: 10.3390/bios12121096.
N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, and J. L. Dempsey, “A Practical Beginner’s Guide to Cyclic Voltammetry,” J Chem Educ, vol. 95, no. 2, pp. 197–206, Feb. 2018, doi: 10.1021/acs.jchemed.7b00361.
F. H. Pilz and P. Kielb, “Cyclic voltammetry, square wave voltammetry or electrochemical impedance spectroscopy? Interrogating electrochemical approaches for the determination of electron transfer rates of immobilized redox proteins,” BBA Advances, vol. 4, Jan. 2023, doi: 10.1016/j.bbadva.2023.100095.
Z. Hirbodvash and P. Berini, “Surface Plasmon Electrochemistry: Tutorial and Review,” Mar. 01, 2023, MDPI. doi: 10.3390/chemosensors11030196.
A. W. Colburn, K. J. Levey, D. O’Hare, and J. V. Macpherson, “Lifting the lid on the potentiostat: a beginner’s guide to understanding electrochemical circuitry and practical operation,” Apr. 14, 2021, Royal Society of Chemistry. doi: 10.1039/d1cp00661d.
“LMP91000 Sensor AFE System: Configurable AFE Potentiostat for Low-Power Chemical Sensing Applications,” 2011. [Online]. Available: www.ti.com
J. Monge, O. Postolache, A. Trandabat, S. Macovei, and Ramona Burlacu, “Mobile Potentiostat IoT Compatible,” International Conference on Sensing and Instrumentation in IoT Era (ISSI), 2019.
X. Pu et al., “Understanding and Calibration of Charge Storage Mechanism in Cyclic Voltammetry Curves,” Angewandte Chemie - International Edition, vol. 60, no. 39, pp. 21310–21318, Sep. 2021, doi: 10.1002/anie.202104167.
G. Wosiak, D. Coelho, E. B. Carneiro-Neto, E. C. Pereira, and M. C. Lopes, “Numerical Resolving of Net Faradaic Current in Fast-Scan Cyclic Voltammetry Considering Induced Charging Currents,” Anal Chem, vol. 92, no. 23, pp. 15412–15419, Dec. 2020, doi: 10.1021/acs.analchem.0c03026.
R. H. R. Mohammed, R. Y. A. Hassan, R. Mahmoud, A. A. Farghali, and M. E. M. Hassouna, “Electrochemical determination of cadmium ions in biological and environmental samples using a newly developed sensing platform made of nickel tungstate-doped multi-walled carbon nanotubes,” J Appl Electrochem, vol. 54, no. 3, pp. 657–668, Mar. 2024, doi: 10.1007/s10800-023-01976-y.
J. Hou, Y. Fan, X. Ma, X. Dong, and S. Yao, “Effects of modified fly ash doped carbon paste electrodes and metal film electrodes on the determination of trace cadmium(ii) by anodic stripping voltammetry,” RSC Adv, vol. 11, no. 28, pp. 17240–17248, Apr. 2021, doi: 10.1039/d0ra07493d.
C. Raril and J. G. Manjunatha, “Sensitive Electrochemical Analysis of Resorcinol using Polymer Modified Carbon Paste Electrode: A Cyclic Voltammetric Study,” Analytical & Bioanalytical Electrochemistry, vol. 10, no. 4, pp. 488–498, Apr. 2018.
V. H. B. Oliveira et al., “A sensitive electrochemical sensor for Pb2+ ions based on ZnO nanofibers functionalized by L-cysteine,” J Mol Liq, vol. 309, Jul. 2020, doi: 10.1016/j.molliq.2020.113041.
A. A. Oladipo, S. D. Oskouei, and M. Gazi, “Metal-organic framework-based nanomaterials as opto-electrochemical sensors for the detection of antibiotics and hormones: A review,” 2023, Beilstein-Institut Zur Forderung der Chemischen Wissenschaften. doi: 10.3762/bjnano.14.52.
K. J. Iqbal et al., “Determination of heavy metals (Pb, Cr, As, Hg, and Cd) into the body organs of selected fish, water, sediment, and soil samples from Head Punjnad and Head Taunsa, Punjab, Pakistan,” PLoS One, vol. 18, no. 9 September, Sep. 2023, doi: 10.1371/journal.pone.0288163.



