Ekstraksi Opini Berbasis Fitur Untuk Review Produk Berbahasa Indonesia Dengan Algoritma Fp-growth

Penulis

  • Tetya Arum Dhahyani Telkom University
  • Eko Darwiyanto Telkom University
  • Arie Ardiyanti Suryani Telkom University

Abstrak

ABSTRAK Seiring dengan berkembangnya teknologi dalam dunia Internet, e-commerce menjadi hal yang tidak asing lagi. Salah satu bentuk pemanfaatan e-commerce adalah penggunaan web site sebagai sarana jual beli. Beberapa web site yang memungkinkan pelanggannya untuk berbelanja secara online juga memberikan keleluasaan kepada pelanggannya untuk turut aktif menuliskan review tentang produk yang dibelinya. Konsekuensinya adalah peningkatan jumlah review produk. Setiap hari bisa saja ratusan review baru muncul. Hal ini akan berpotensi membuat pelanggan mengalami kesulitan untuk membaca review yang dapat membantunya untuk mengambil keputusan membeli produk. Untuk itu, diperlukan sebuah sistem yang dapat memberikan kemudahan bagi pelanggan untuk membaca review yang tersedia di Internet. Solusi yang ditawarkan adalah feature-based opinion mining. Sistem ini akan mencari fitur produk dari kalimat opini. Kemudian, kalimat opini yang mengandung fitur yang telah diidentifikasi tersebut akan diklasifikasikan menjadi opini yang berorientasi positif atau negatif. Data set yang digunakan berasal dari review di www.tabloidpulsa.co.id. Hasil penelitian menunjukkan bahwa proses ektraksi fitur dengan Algoritma FP-Growth menghasilkan nilai precision yang sangat rendah dengan rata-rata nilai sebesar 0,103. Penyebab rendahnya nilai precision terutama karena hasil ekstraksi fitur yang terdiri dari lebih satu kata tidak memperhatikan urutan kata dalam kalimat. Sedangkan proses orientasi opini sudah cukup tinggi dengan rata -rata akurasi sebesar 71,9%.

Kata Kunci : opinion mining, FP-Growth, fitur produk, sentimen analisis, SentiWordNet

##submission.downloads##

Diterbitkan

2015-08-01

Terbitan

Bagian

Program Studi S1 Informatika