Analisis Sentimen Perdebatan Publik Tentang Khilafah Di Twitter (Studi Pada Data Twitter Pada Topik Percakapan Khilafah Tahun 2022)

Authors

  • Noor Hudha Telkom University
  • Abdul Fadli Kalaloi Telkom University

Abstract

Conversations about the Caliphate are quite massive and widely discussed in the world. The purpose of this study is
to find out how the general public perceives the Caliphate as seen from sentimens on Twitter. Public conversations
about Khilafah are often linked to radicalism and terrorism. On the other hand, public conversations about the
Khilafah also arise because there are people who want to restore the Khilafah system in the world. This research
method uses a qualitative method with a descriptive sentimen analysis approach using data sources obtained from an
open source crawling website called academic.droneemprit.id. The sentimen results based on the
academic.droneemprit.id site are 60% of conversations discussing Khilafah in Indonesia are positive sentimens, 38%
convey negative sentimens, and 3% convey neutral sentimens. The majority of tweets discussing the Khilafah issue
are positive tweets. However, tweets that are popular and have high engagement are negative tweets.


Keywords-sentimen analysis, public debate, caliphate, Twitter.

References

Ali, D. J., & Eriyanto. (2021). Political Polarization and Selective Exposure of Social Media Users in Indonesia. Jurnal

Ilmu Sosial Dan Ilmu Politik, 24(3), 268–283. https://doi.org/10.22146/JSP.58199

Anshori, A. (2019). The Radical Islamic Movement in Indonesia: Roots and Factors. 13(2), 217–236.

Ardiansyah, I. (2017). Pergeseran Dari Sistem Khilafah Ke Nation State Dunia Islam. UIR Law Review, 01.

Arifin, M. (2017). Menakar Konsepsi Khilafah. 3(2). https://hizbut-tahrir.or.id

Bagus, A. M., Wahid, A., Perwira Yustika, G., & Ps, K. (2018). KONTROVERSI PENERAPAN KHILAFAH DI

INDONESIA. In Jurnal Islamika: Jurnal Ilmu-Ilmu Keislaman (Vol. 18, Issue 01).

Balahur, A. (2013). Sentiment Analysis in Social Media Texts. European Commission Joint Research Centr, 120–

http://www.urbandictionary.com/

Bazarova, N. N., Taft, J. G., Choi, Y. H., & Cosley, D. (2012). Managing Impressions and Relationships on Facebook:

Self-Presentational and Relational Concerns Revealed Through the Analysis of Language Style. Journal of

Language and Social Psychology, 32(2), 121–141. https://doi.org/10.1177/0261927X12456384

Berger, J., & Milkman, K. L. (2012). What Makes Online Content Viral? In Source: Journal of Marketing Research

(Vol. 49, Issue 2).

Berliana, D. R., & Santoso, B. (2022). Analisis Jaringan Media Sosial Dan Analisis Sentimen Pengguna Twitter

Terhadap #Ridwankamil Dan #Aniesbaswedan. Mediakom : Jurnal Ilmu Komunikasi, 6(2), 150–162.

https://doi.org/10.35760/mkm.2022.v6i2.6962

Bozdag, E., & van den Hoven, J. (2015). Breaking The Filter Bubble: Democracy and Design. Ethics and Information

Technology, 17(4), 249–265. https://doi.org/10.1007/s10676-015-9380-y

Brady, W. J., Wills, J. A., Jost, J. T., Tucker, J. A., Van Bavel, J. J., & Fiske, S. T. (2017). Emotion shapes the diffusion

of moralized content in social networks. Proceedings of the National Academy of Sciences of the United

States of America, 114(28), 7313–7318. https://doi.org/10.1073/pnas.161892311

Bustamam-Ahmad, K., Zulfidar, F., Islam Negeri Ar-Raniry, U., Aceh, B., & Tinggi Ilmu Sosial dan Ilmu Politik Al-

Washliyah, S. (2021). Memahami Kembali Konsep Khilāfah dalam Sejarah Global. Jurnal Pendidikan

Hukum Dan Sosial Keagamaan AT-TAFKIR.

Chooper, C. (2014, June 30). Viewpoint: Isis Caliphate a Dangerous Development. BBC.

Creswell, J. W., & Creswell, J. D. (2018). Research Design: Qualitative, Quantitative, and Mixed Methods

Approaches (5th ed.). SAGE Publications.

Domingo, L. M., Martín, J. C., & Mandsberg, G. (2019). Social media as a resource for sentiment analysis of Airport

Service Quality (ASQ). Journal of Air Transport Management, 78, 106–115.

https://doi.org/10.1016/j.jairtraman.2019.01.004

Drus, Z., & Khalid, H. (2019). Sentiment analysis in social media and its application: Systematic literature review.

Procedia Computer Science, 161, 707–714. https://doi.org/10.1016/j.procs.2019.11.174

Ekman, P., & Cordaro, D. (2011). What is Meant by Calling Emotions Basic. Emotion Review, 3(4), 364–370.

https://doi.org/10.1177/1754073911410740

Fadhillah, D., Sari, D., Aulia, N. Z., & Safitri, D. (2022). Analisis Fenomenologi Tagar #AnalogSwitchOff terhadap

Polarisasi Media Sosial Twitter pada Generasi Z. Jurnal Ilmu Komunikasi, 5(2).

Fahimah, M. atul, & Ainiyah, I. R. (2023). Minat Beli Produk Fashion: Penggunaan Hashtag Dan Review Produk

Pada Aplikasi TikTok. Jurnal Ecoment Global, 8(2), 79–82. www.databoks.katadata.com,

Faulina, A., Chatra, E., & Sarmiati, S. (2020). Peran Buzzer Dan Konstruksi Pesan Viral Dalam Proses Pembentukan

Opini Publik Di New Media. JRTI (Jurnal Riset Tindakan Indonesia), 7(1), 1.

https://doi.org/10.29210/30031390000

Fitri, V. A., Andreswari, R., & Hasibuan, M. A. (2019). Sentiment Analysis of Social Media Twitter with Case of

Anti-LGBT Campaign in Indonesia using Naïve Bayes, Decision Tree, and Random Forest Algorithm.

Procedia Computer Science, 161, 765–772. https://doi.org/10.1016/j.procs.2019.11.181

Flaxman, S., Goel, S., & Rao, J. M. (2016). Filter Bubbles, Echo Chambers, and Online News Consumption. Public

Opinion Quarterly, 80(Specialissue1), 298–320. https://doi.org/10.1093/poq/nfw006

Fridom Mailo, F., & Lazuardi, L. (2019). Analisis Sentimen Data Twitter Menggunakan Metode Text Mining Tentang

Masalah Obesitas di Indonesia. Journal of Information System for Public Helath, 4(1), 28–36.

Geschke, D., Lorenz, J., & Holtz, P. (2019). The Triple-Filter bubble: Using Agent-Based Modelling to Test a Metatheoretical

Framework for the Emergence of Filter Bubbles and Echo Chambers. British Journal of Social

Psychology, 58(1), 129–149. https://doi.org/10.1111/bjso.12286

Glynn, Carrol J, Herbst, Shapiro, Robert Y, Lindeman, & Susan. (2019). Public Opinion (3rd ed.). Rourledge.

Goldenberg, A., Garcia, D., Halperin, E., & Gross, J. J. (2020). Collective Emotions. Current Directions in

Psychological Science.

Gong, C., Du, Y., Li, X., Chen, X., Li, X., Wang, Y., & Zhou, Q. (2020). Structural Hole-based Approach to Control

Public Opinion in a Social Network. Engineering Applications of Artificial Intelligence, 93.

https://doi.org/10.1016/j.engappai.2020.103690

Gorodnichenko, Y., Pham, T., & Talavera, O. (2021). Social Media, Sentiment and Public Opinions: Evidence from

#Brexit and #USElection. European Economic Review, 136.

https://doi.org/10.1016/j.euroecorev.2021.103772

Guess, A., Reifer, J., & Lyons, B. (2018). Avoiding The Echo Chamber About Echo Chamber.

Hadi, A., & Rusman, A. (2021). Penelitian Kualitatif : Studi Fenomenologi, Case Study, Grounded Theory, Etnografi,

Biografi (Vol. 1). Pena Persada.

Hafizi, K., Yuhelman, N., Kuantan Singingi, I., Kuantan Riau, T., Kimia Universitas Islam Kuantan Singingi, P., &

Pendidikan Agama Islam Universitas Islam Kuantan Singingi Teluk Kuantan, B. (2022). Analysis Of The

Filter Bubble Algorithm In The Search For Information On The Internet. Jurnal Teknologi Dan Open Source,

(2), 136–141. https://doi.org/10.36378/jtos.v3xx

Harahap, N. (2020). Penelitian Kualitatif (1st ed.). Wal ashri Publishing.

Hasfi, N., Usmand, S., Pudjo, H., Program, S., Komunikasi, S. I., & Soedharto, J. P. (2017). Anonimitas di Media

Sosial: Sarana Kebebasan Berekspresi atau Patologi Demokrasi? In Jurnal Ilmu Komunikasi (Vol. 15, Issue

.

Hendrastuty, N., Rahman Isnain, A., & Yanti Rahmadhani, A. (2021). Analisis Sentimen Masyarakat Terhadap

Program Kartu Prakerja Pada Twitter Dengan Metode Support Vector Machine. Jurnal Informatika: Jurnal

Pengembangan IT (JPIT), 6(3). http://situs.com

Imran, Sultan, & Mayong. (2024). Wacana Politik Identitas dalam Pidato Calon Presiden RI 2024. Jurnal Onoma:

Pendidikan, Bahasa Dan Sastra, 10(2).

Indrawati. (2020). Wujud Persuasi Dan Respon Kaum Milenial Di Media Sosial Facebook Pada Pilpres 2019. Junral

Bahasa, Sastra Dan Pembelajarannya, 10(2), 117–138.

Jauhari, M., Suryandaru, Y. S., & Sugihartati, R. (2021). Dialektika Khilafah dan Politik Kebangsaan dalam Media

Publik Siber. Religious: Jurnal Studi Agama-Agama Dan Lintas Budaya, 5(2), 199–216.

https://doi.org/10.15575/rjsalb.v5i2.11343

Joyce, B., & Deng, J. (2017). Sentiment Analysis of Tweets for the 2016 US Presidential Election.

Kabir, A. I., Ahmed, K., & Karim, R. (2020). Word Cloud and Sentiment Analysis of Amazon Earphones Reviews

with R Programming Language. Informatica Economica, 24(4/2020), 55–71.

https://doi.org/10.24818/issn14531305/24.4.2020.05

Kalaloi, A. F. (2020). Delegitimation of Single-Mux Policy on Re-Regulation Process of Indonesian Broadcasting

Bill in Media Framing. Jurnal Komunikasi: Malaysian Journal of Communication, 36(3), 49–66.

https://doi.org/10.17576/JKMJC-2020-3603-04

Kalaloi, A. F., Primayanti, A., Dianita, I. A., Mahestu, G., & Dirgantara, P. (2021). Mediated Solidarity and

Community Resilience on Twitter during Covid-19 Pandemic in Indonesia. 2021 International Conference

Advancement in Data Science, E-Learning and Information Systems, ICADEIS 2021.

https://doi.org/10.1109/ICADEIS52521.2021.9702089

Kaur, H., Mangat, V., & Nidhi. (2017). A Survey of Sentiment Analysis Techniques. Proceedings of the International

Conference on IoT in Social, Mobile, Analytics and Cloud, 921–925.

Khatami, M. I., & Kurnia, N. (2022). E-Demokrasi pada Perdebatan Publik di Twitter: Analisis Konten Polemik

Pemecatan Pegawai Komisi Pemberantasan Korupsi (KPK). Jurnal Riset Komunikasi, 5(1), 51–68.

Khotim Muzakka, A. (2017). Propaganda Khilafah HTI DI Indonesia (Vol. 14, Issue 2). http://hizbut-tahrir.or.id.

Kumar, S., Morstatter, F., & Huan Liu. (2014). Twitter Data Analytics. Springer.

https://doi.org/10.1007/9781461493723

Kurniawan, A. W., & Puspitaningtyas, Z. (2016). Metode Penelitian Kuantitatif (1st ed., Vol. 1). Pandiva Buku.

Lim, M. (2017). Freedom to Hate: Social Media, Algorithmic Enclaves, and The Rise of Tribal Nationalism in

Indonesia. Critical Asian Studies, 49(3), 411–427. https://doi.org/10.1080/14672715.2017.1341188

Liu, B. (2012). Sentiment Analysis and Opinion Mining. Springer.

Maarif, M. R. (2018). Content Analysis on Twitter Users Interaction within First 100 Days of Jakarta’s New

Government by Using Text Mining. Journal Pekommas, 3(2), 137.

https://doi.org/10.30818/jpkm.2018.2030203

Makin, A. (2016). Tanggalkan Khilafah DI Bumi Ini: Membaca Narasi Sukarno Tentang Sekularisme Turki. Al-

Tahrir, 16(2), 313–338.

Manjdusri, A. (2023). Opini Publik Tentang Nuansa Islam Dalam Praktik Periklanan Di Indonesia. Jurnal CommLine,

(01), 55–70.

Manovich, L. (2001). The Language of New Media (R. Malina, Ed.). Massachusetts Institute of Technology.

Mansour, S. (2018). Social media analysis of user’s responses to terrorism using sentiment analysis and text mining.

Procedia Computer Science, 140, 95–103. https://doi.org/10.1016/j.procs.2018.10.297

McQuail, D. (2010). McQuail’s Mass Communication Theory.

Muthohirin, N. (2021). Da’wa in Social Media: TheViews of Ustad Hanan Attaki and Felix Siauw to The Hijrah

Phenomenon. Afkaruna: Indonesian Interdisciplinary Journal of Islamic Studies, 17(2), Layouting.

https://doi.org/10.18196/afkaruna.v17i2.12554

Neogi, A. S., Garg, K. A., Mishra, R. K., & Dwivedi, Y. K. (2021). Sentiment Analysis and Classification of Indian

Farmers’ Protest Using Twitter Data. International Journal of Information Management Data Insights, 1(2).

https://doi.org/10.1016/j.jjimei.2021.100019

Newman, Janet, & Yeates, N. (2008). Problem’ populations,

society. UK: Open Univeristy Press.

Nurdin, I., Sardini, N. H., & Oktaviani, J. (2023). The Origins of Indonesian Democracy and Its Implications in

Indonesian Politics. Archives of Business Research, 11(5), 80–98. https://doi.org/10.14738/abr.115.14703/

Published

2024-12-23

Issue

Section

Program Studi S1 Ilmu Komunikasi