Analisis Sentimen Perdebatan Publik Tentang Khilafah Di Twitter (Studi Pada Data Twitter Pada Topik Percakapan Khilafah Tahun 2022)
Abstract
Conversations about the Caliphate are quite massive and widely discussed in the world. The purpose of this study is
to find out how the general public perceives the Caliphate as seen from sentimens on Twitter. Public conversations
about Khilafah are often linked to radicalism and terrorism. On the other hand, public conversations about the
Khilafah also arise because there are people who want to restore the Khilafah system in the world. This research
method uses a qualitative method with a descriptive sentimen analysis approach using data sources obtained from an
open source crawling website called academic.droneemprit.id. The sentimen results based on the
academic.droneemprit.id site are 60% of conversations discussing Khilafah in Indonesia are positive sentimens, 38%
convey negative sentimens, and 3% convey neutral sentimens. The majority of tweets discussing the Khilafah issue
are positive tweets. However, tweets that are popular and have high engagement are negative tweets.
Keywords-sentimen analysis, public debate, caliphate, Twitter.
References
Ali, D. J., & Eriyanto. (2021). Political Polarization and Selective Exposure of Social Media Users in Indonesia. Jurnal
Ilmu Sosial Dan Ilmu Politik, 24(3), 268–283. https://doi.org/10.22146/JSP.58199
Anshori, A. (2019). The Radical Islamic Movement in Indonesia: Roots and Factors. 13(2), 217–236.
Ardiansyah, I. (2017). Pergeseran Dari Sistem Khilafah Ke Nation State Dunia Islam. UIR Law Review, 01.
Arifin, M. (2017). Menakar Konsepsi Khilafah. 3(2). https://hizbut-tahrir.or.id
Bagus, A. M., Wahid, A., Perwira Yustika, G., & Ps, K. (2018). KONTROVERSI PENERAPAN KHILAFAH DI
INDONESIA. In Jurnal Islamika: Jurnal Ilmu-Ilmu Keislaman (Vol. 18, Issue 01).
Balahur, A. (2013). Sentiment Analysis in Social Media Texts. European Commission Joint Research Centr, 120–
http://www.urbandictionary.com/
Bazarova, N. N., Taft, J. G., Choi, Y. H., & Cosley, D. (2012). Managing Impressions and Relationships on Facebook:
Self-Presentational and Relational Concerns Revealed Through the Analysis of Language Style. Journal of
Language and Social Psychology, 32(2), 121–141. https://doi.org/10.1177/0261927X12456384
Berger, J., & Milkman, K. L. (2012). What Makes Online Content Viral? In Source: Journal of Marketing Research
(Vol. 49, Issue 2).
Berliana, D. R., & Santoso, B. (2022). Analisis Jaringan Media Sosial Dan Analisis Sentimen Pengguna Twitter
Terhadap #Ridwankamil Dan #Aniesbaswedan. Mediakom : Jurnal Ilmu Komunikasi, 6(2), 150–162.
https://doi.org/10.35760/mkm.2022.v6i2.6962
Bozdag, E., & van den Hoven, J. (2015). Breaking The Filter Bubble: Democracy and Design. Ethics and Information
Technology, 17(4), 249–265. https://doi.org/10.1007/s10676-015-9380-y
Brady, W. J., Wills, J. A., Jost, J. T., Tucker, J. A., Van Bavel, J. J., & Fiske, S. T. (2017). Emotion shapes the diffusion
of moralized content in social networks. Proceedings of the National Academy of Sciences of the United
States of America, 114(28), 7313–7318. https://doi.org/10.1073/pnas.161892311
Bustamam-Ahmad, K., Zulfidar, F., Islam Negeri Ar-Raniry, U., Aceh, B., & Tinggi Ilmu Sosial dan Ilmu Politik Al-
Washliyah, S. (2021). Memahami Kembali Konsep Khilāfah dalam Sejarah Global. Jurnal Pendidikan
Hukum Dan Sosial Keagamaan AT-TAFKIR.
Chooper, C. (2014, June 30). Viewpoint: Isis Caliphate a Dangerous Development. BBC.
Creswell, J. W., & Creswell, J. D. (2018). Research Design: Qualitative, Quantitative, and Mixed Methods
Approaches (5th ed.). SAGE Publications.
Domingo, L. M., Martín, J. C., & Mandsberg, G. (2019). Social media as a resource for sentiment analysis of Airport
Service Quality (ASQ). Journal of Air Transport Management, 78, 106–115.
https://doi.org/10.1016/j.jairtraman.2019.01.004
Drus, Z., & Khalid, H. (2019). Sentiment analysis in social media and its application: Systematic literature review.
Procedia Computer Science, 161, 707–714. https://doi.org/10.1016/j.procs.2019.11.174
Ekman, P., & Cordaro, D. (2011). What is Meant by Calling Emotions Basic. Emotion Review, 3(4), 364–370.
https://doi.org/10.1177/1754073911410740
Fadhillah, D., Sari, D., Aulia, N. Z., & Safitri, D. (2022). Analisis Fenomenologi Tagar #AnalogSwitchOff terhadap
Polarisasi Media Sosial Twitter pada Generasi Z. Jurnal Ilmu Komunikasi, 5(2).
Fahimah, M. atul, & Ainiyah, I. R. (2023). Minat Beli Produk Fashion: Penggunaan Hashtag Dan Review Produk
Pada Aplikasi TikTok. Jurnal Ecoment Global, 8(2), 79–82. www.databoks.katadata.com,
Faulina, A., Chatra, E., & Sarmiati, S. (2020). Peran Buzzer Dan Konstruksi Pesan Viral Dalam Proses Pembentukan
Opini Publik Di New Media. JRTI (Jurnal Riset Tindakan Indonesia), 7(1), 1.
https://doi.org/10.29210/30031390000
Fitri, V. A., Andreswari, R., & Hasibuan, M. A. (2019). Sentiment Analysis of Social Media Twitter with Case of
Anti-LGBT Campaign in Indonesia using Naïve Bayes, Decision Tree, and Random Forest Algorithm.
Procedia Computer Science, 161, 765–772. https://doi.org/10.1016/j.procs.2019.11.181
Flaxman, S., Goel, S., & Rao, J. M. (2016). Filter Bubbles, Echo Chambers, and Online News Consumption. Public
Opinion Quarterly, 80(Specialissue1), 298–320. https://doi.org/10.1093/poq/nfw006
Fridom Mailo, F., & Lazuardi, L. (2019). Analisis Sentimen Data Twitter Menggunakan Metode Text Mining Tentang
Masalah Obesitas di Indonesia. Journal of Information System for Public Helath, 4(1), 28–36.
Geschke, D., Lorenz, J., & Holtz, P. (2019). The Triple-Filter bubble: Using Agent-Based Modelling to Test a Metatheoretical
Framework for the Emergence of Filter Bubbles and Echo Chambers. British Journal of Social
Psychology, 58(1), 129–149. https://doi.org/10.1111/bjso.12286
Glynn, Carrol J, Herbst, Shapiro, Robert Y, Lindeman, & Susan. (2019). Public Opinion (3rd ed.). Rourledge.
Goldenberg, A., Garcia, D., Halperin, E., & Gross, J. J. (2020). Collective Emotions. Current Directions in
Psychological Science.
Gong, C., Du, Y., Li, X., Chen, X., Li, X., Wang, Y., & Zhou, Q. (2020). Structural Hole-based Approach to Control
Public Opinion in a Social Network. Engineering Applications of Artificial Intelligence, 93.
https://doi.org/10.1016/j.engappai.2020.103690
Gorodnichenko, Y., Pham, T., & Talavera, O. (2021). Social Media, Sentiment and Public Opinions: Evidence from
#Brexit and #USElection. European Economic Review, 136.
https://doi.org/10.1016/j.euroecorev.2021.103772
Guess, A., Reifer, J., & Lyons, B. (2018). Avoiding The Echo Chamber About Echo Chamber.
Hadi, A., & Rusman, A. (2021). Penelitian Kualitatif : Studi Fenomenologi, Case Study, Grounded Theory, Etnografi,
Biografi (Vol. 1). Pena Persada.
Hafizi, K., Yuhelman, N., Kuantan Singingi, I., Kuantan Riau, T., Kimia Universitas Islam Kuantan Singingi, P., &
Pendidikan Agama Islam Universitas Islam Kuantan Singingi Teluk Kuantan, B. (2022). Analysis Of The
Filter Bubble Algorithm In The Search For Information On The Internet. Jurnal Teknologi Dan Open Source,
(2), 136–141. https://doi.org/10.36378/jtos.v3xx
Harahap, N. (2020). Penelitian Kualitatif (1st ed.). Wal ashri Publishing.
Hasfi, N., Usmand, S., Pudjo, H., Program, S., Komunikasi, S. I., & Soedharto, J. P. (2017). Anonimitas di Media
Sosial: Sarana Kebebasan Berekspresi atau Patologi Demokrasi? In Jurnal Ilmu Komunikasi (Vol. 15, Issue
.
Hendrastuty, N., Rahman Isnain, A., & Yanti Rahmadhani, A. (2021). Analisis Sentimen Masyarakat Terhadap
Program Kartu Prakerja Pada Twitter Dengan Metode Support Vector Machine. Jurnal Informatika: Jurnal
Pengembangan IT (JPIT), 6(3). http://situs.com
Imran, Sultan, & Mayong. (2024). Wacana Politik Identitas dalam Pidato Calon Presiden RI 2024. Jurnal Onoma:
Pendidikan, Bahasa Dan Sastra, 10(2).
Indrawati. (2020). Wujud Persuasi Dan Respon Kaum Milenial Di Media Sosial Facebook Pada Pilpres 2019. Junral
Bahasa, Sastra Dan Pembelajarannya, 10(2), 117–138.
Jauhari, M., Suryandaru, Y. S., & Sugihartati, R. (2021). Dialektika Khilafah dan Politik Kebangsaan dalam Media
Publik Siber. Religious: Jurnal Studi Agama-Agama Dan Lintas Budaya, 5(2), 199–216.
https://doi.org/10.15575/rjsalb.v5i2.11343
Joyce, B., & Deng, J. (2017). Sentiment Analysis of Tweets for the 2016 US Presidential Election.
Kabir, A. I., Ahmed, K., & Karim, R. (2020). Word Cloud and Sentiment Analysis of Amazon Earphones Reviews
with R Programming Language. Informatica Economica, 24(4/2020), 55–71.
https://doi.org/10.24818/issn14531305/24.4.2020.05
Kalaloi, A. F. (2020). Delegitimation of Single-Mux Policy on Re-Regulation Process of Indonesian Broadcasting
Bill in Media Framing. Jurnal Komunikasi: Malaysian Journal of Communication, 36(3), 49–66.
https://doi.org/10.17576/JKMJC-2020-3603-04
Kalaloi, A. F., Primayanti, A., Dianita, I. A., Mahestu, G., & Dirgantara, P. (2021). Mediated Solidarity and
Community Resilience on Twitter during Covid-19 Pandemic in Indonesia. 2021 International Conference
Advancement in Data Science, E-Learning and Information Systems, ICADEIS 2021.
https://doi.org/10.1109/ICADEIS52521.2021.9702089
Kaur, H., Mangat, V., & Nidhi. (2017). A Survey of Sentiment Analysis Techniques. Proceedings of the International
Conference on IoT in Social, Mobile, Analytics and Cloud, 921–925.
Khatami, M. I., & Kurnia, N. (2022). E-Demokrasi pada Perdebatan Publik di Twitter: Analisis Konten Polemik
Pemecatan Pegawai Komisi Pemberantasan Korupsi (KPK). Jurnal Riset Komunikasi, 5(1), 51–68.
Khotim Muzakka, A. (2017). Propaganda Khilafah HTI DI Indonesia (Vol. 14, Issue 2). http://hizbut-tahrir.or.id.
Kumar, S., Morstatter, F., & Huan Liu. (2014). Twitter Data Analytics. Springer.
https://doi.org/10.1007/9781461493723
Kurniawan, A. W., & Puspitaningtyas, Z. (2016). Metode Penelitian Kuantitatif (1st ed., Vol. 1). Pandiva Buku.
Lim, M. (2017). Freedom to Hate: Social Media, Algorithmic Enclaves, and The Rise of Tribal Nationalism in
Indonesia. Critical Asian Studies, 49(3), 411–427. https://doi.org/10.1080/14672715.2017.1341188
Liu, B. (2012). Sentiment Analysis and Opinion Mining. Springer.
Maarif, M. R. (2018). Content Analysis on Twitter Users Interaction within First 100 Days of Jakarta’s New
Government by Using Text Mining. Journal Pekommas, 3(2), 137.
https://doi.org/10.30818/jpkm.2018.2030203
Makin, A. (2016). Tanggalkan Khilafah DI Bumi Ini: Membaca Narasi Sukarno Tentang Sekularisme Turki. Al-
Tahrir, 16(2), 313–338.
Manjdusri, A. (2023). Opini Publik Tentang Nuansa Islam Dalam Praktik Periklanan Di Indonesia. Jurnal CommLine,
(01), 55–70.
Manovich, L. (2001). The Language of New Media (R. Malina, Ed.). Massachusetts Institute of Technology.
Mansour, S. (2018). Social media analysis of user’s responses to terrorism using sentiment analysis and text mining.
Procedia Computer Science, 140, 95–103. https://doi.org/10.1016/j.procs.2018.10.297
McQuail, D. (2010). McQuail’s Mass Communication Theory.
Muthohirin, N. (2021). Da’wa in Social Media: TheViews of Ustad Hanan Attaki and Felix Siauw to The Hijrah
Phenomenon. Afkaruna: Indonesian Interdisciplinary Journal of Islamic Studies, 17(2), Layouting.
https://doi.org/10.18196/afkaruna.v17i2.12554
Neogi, A. S., Garg, K. A., Mishra, R. K., & Dwivedi, Y. K. (2021). Sentiment Analysis and Classification of Indian
Farmers’ Protest Using Twitter Data. International Journal of Information Management Data Insights, 1(2).
https://doi.org/10.1016/j.jjimei.2021.100019
Newman, Janet, & Yeates, N. (2008). Problem’ populations,
society. UK: Open Univeristy Press.
Nurdin, I., Sardini, N. H., & Oktaviani, J. (2023). The Origins of Indonesian Democracy and Its Implications in
Indonesian Politics. Archives of Business Research, 11(5), 80–98. https://doi.org/10.14738/abr.115.14703/